
Sci.Int.(Lahore),28(1),221-226,2016 ISSN 1013-5316; CODEN: SINTE 8 221

Jan.-Feb

ANALYSIS, DESIGN, ARCHITECTURE SPECIFICATION, AND FORMAL
VERIFICATION OF A SMART FLOOD MONITORING SYSTEM-OF-

SYSTEMS
Saima Khan

1
, Muhammad Anwar

2
 and Nadeem Akhtar

3

1Department of Computer Science, Virtual University Of Pakistan, Pakistan
2Instructor of Computer Sciences, Virtual University of Pakistan (VU), Pakistan

3Assistant Professor, Department of Computer Science & IT, The Islamia University of Bahawalpur, Pakistan

Corresponding Author: nadeem.akhtar@iub.edu.pk

Abstract: Floods are the most common hazards in pakistan. In a flood situation, forecast of necessary information and an
effective evacuation plan are vital. Smart flood monitoring system-of-systems (sos) is a flood monitoring and rescue
system. It collects information from weather forecast, flood onlookers and observers. This information is processed and
then made available as alerts to the clients. The system also maintains continuous communication with the authorities for
disaster management, social services, and emergency responders. Smart flood monitoring sos synchronizes the support
offered by emergency responders with the community needs. This paper presents the architecture specification and formal
verification of the proposed smart flood monitoring sos. The formal model of this sos is specified as well as model-checked
to ensure the correctness properties of safety and liveness.

Keywords: Flood Monitoring; System-of-Systems (SoS); Behavioural Modeling; Formal verification; Model Checking; Correctness

properties; Safety; Liveness

1. INTRODUCTION

Natural disasters affect millions of people every year around
the globe. These disasters (i.e. floods, earthquakes,
windstorms, hurricanes, fires) cause loss of precious human
lives, animal lives, crops, infrastructure and properties.
Resulting in drastic impact on the economy, especially for a
developing country like Pakistan.
In Pakistan, floods are the most common hydrological
disasters showing time and again the destructive power of
moving water. Over the last few decades, floods are the
single most common cause of destruction. Sometimes we are
able to anticipate the flood and prepare the evacuation plan,
i.e. a flood situation arising as a result of rains takes a little
longer for the flood to develop. But there are also flash floods
that develop instantly.

1. In our part of the world, the major factors that cause
floods are:

2. Massive unorganized illegal constructions of
buildings and roads on riversides hinder the natural
flow of river water during low floods. It also
reduces the area for absorption of excessive rain
water.

3. Blocking of flood drain canals. These canals require
periodic maintenance.

4. Cutting down of forests contributes in landslides as
well as floods.

5. Breaking of levee or damages to dams. These levee
and dams require continuous periodic maintenance.

6. Each year the seasonal weather system in Pakistan
brings heavy monsoon rains.

When a flood threat becomes a reality, infrastructure is
destroyed, and people are left homeless to fight with water
borne diseases. The local economy suffers. A flood in 2010
affected more than 20 million people. Almost 2000 people
were reported dead. People were dislocated; crops and
properties were ruined [1].
Flood resistant structures and redirection are the ways to
reduce losses. Massive infrastructure of dams and levees also
helps. Advanced computer forecasts and predictions based on
weather and flood related data help to inform with accuracy
about the possibility and intensity of the flood. Smart Flood
Monitoring SoS observes and monitors floods and broadcasts
the flood warnings to emergency responders and potential

victims. These flood warnings are sent to the affected areas
via SMS, television broadcast, radio broadcast, email and a
web portal. The emergency responders are kept informed
using the direct dedicated high speed links. It keeps the flood
affected people informed about the availability of food,
shelter, new road plans, power services, gas services, health
services, and rescue services. They also keep the people
connected with one another during the disaster. It is
important to have an efficient and robust communication
infrastructure running uninterrupted throughout the calamity.
There is a backup plan to keep the communication up during
the disaster even if the communication wires and towers go
down because of floods.
We have proposed a Smart Flood Monitoring SoS for the
monitoring of floods as well as rescue and emergency
services in a post-flood disaster situation. Our SoS includes
booster stations equipped with booster balloons to ensure
uninterrupted communication. These booster balloons keep
the TV, radio, telephone, internet and cell phone services
active throughout the course of the disaster. The use of these
technologies keeps the people connected with each other; and
also allows the statistical analysis of the information in hand
to make correct decisions.

2. PROBLEM STATEMENT

In Pakistan floods are frequent and cause a constant threat to
human lives, economy and infrastructure. Thus, a flood
monitoring, warning and rescue system is of critical
importance.

1) The proposed Smart Flood Monitoring SoS emphasizes on
uninterrupted communication between the flood
monitoring system and stakeholders (i.e. affected citizens,
rescue services, police, electronic media, and government
authorities). Communication with these responders
ensures rapid propagation of information and early action
after early flood alert.

2) The proposed Smart Flood Monitoring SoS also
emphasizes on emergency and rescue services just after a
flood. It proposes alternative infrastructures for
uninterrupted communication if the principal
communication infrastructures are destroyed by the
disaster.

3) The correctness of the system is verified by formal Model-
Checking techniques.

mailto:nadeem.akhtar@iub.edu.pk

222 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),221-226,2016

Jan.-Feb

3. STATE OF THE ART

3.1 System-of-Systems (SoS)
SoS facilitates development of large and complex systems. It
is an integration of autonomous systems that are
geographically distributed and support continuous evolution.
These are the systems that are functionally and managerially
independent. These systems on integration, share their
resources and services to serve a larger, complex and unique
functionality that is not possible to achieve otherwise.
Blanchard and Fabrycky in [2] describe SoS as a combined
arrangement of managerially independent and geographically
distributed elements (i.e. already fulfilling some purposes)
put together to work and provide a functionality that is not
possible otherwise.
3.2 Colored Petri-Nets (CPN)
Coloured Petri Nets are high level extension of Petri-Nets
that help to validate concurrent and distributed systems
involving synchronizations. It is a formal, mathematical and
graphical language used to develop executable model of the
system representing places and transitions. Jensen in [8]
presented the concepts and the applications of CPNs in
system modelling. CPN Tools [9] allow construction of CPN
models with timing constraints. This tool also allows
simulating system behaviour and verifying the system by
using state space analysis [10]. The state space analysis
performed by CPN Tools facilitates to analyze some standard
properties including bounded-ness, home, liveness and
fairness [11].
Berthomieu and Diaz in [3], Merlin and Farber in [4] have
acknowledged Petri-Nets very suitable to model time-critical
systems. Petri-Nets cater the time-critical requirements
including associating the timing constraints with the places or
transitions. Denaro and Pezze in [5]; He and Murata in [6]
have presented a good review of various new developments
and applications of Petri-Nets in software engineering.
Xudong in [7] has presented a review showing the
development and applications of Petri-nets in many
disciplines. This review also highlights the Petri-Net support
for general software engineering paradigms.
3.3 Model Checking
Model Checking [12-16] is a method for automatic and
algorithmic verification of finite state concurrent systems. It
takes as input a finite state model of a system and a logical
property, it then systematically checks whether this property
holds for a given initial state in that model. Model checking
is performed as an exhaustive state space search that is
guaranteed to terminate since the model is finite. It uses
temporal logic to specify correct system behaviour.
Model checking addresses finite systems but can be scaled up
to a more complex system as a System-of-System. Here, by
complex we mean a system with a large number of
independent interacting components, with non-linear
aggregate activity, with concurrency between components
and constant evolution. Model checking basic idea is to use
algorithms executed by software tools to verify the
correctness of the system. The user inputs a description of a
model of the system, the possible behaviour, and a
description of the requirements specification i.e. the desirable
behaviour, and leaves the verification up to the machine. If
an error is recognized the tool provides a counter-example
showing under which circumstances the error can be
generated. This allows the user to locate the error and to
repair the model specification before continuing. If no errors
are found, the user can refine its model description e.g. by

taking more design decisions into account so that the model
becomes more concrete and can restart the verification
process.

3.4 Correctness: Safety and liveness properties
Safety property is an invariant which asserts that “something
bad does never happen”, that is an acceptable state of the
system is maintained. For example, a property which assures
that a power reactor temperature would never exceed 100
degree Centigrade etc. Magee and Kramer in [21] have
defined safety property S = {a1, a2 … an} as a deterministic
process that states that a trace consisting of the actions in the
alphabet of S, is accepted by S. ERROR conditions are like
exceptions which present the states that are not required. In
complex systems safety properties are specified by directly
specifying what is required.
Liveness property states the “something good happens” that
shows and specifies the states of system that can be brought
about by an agent under certain given conditions [21]. The
work by [17][18][19][20] have used LTS for the verification
of correctness properties in multi-agent based robotic
systems.

3.5 Labelled Transition System (LTS)
LTS is a collection of techniques for the automated formal
verification of finite-state concurrent systems. It consists of
interacting finite state machines along with their properties; it
performs compositional analysis to exhaustively search for
violations of the required properties. Each component of a
specification is described as LTS, which has all the possible
states a component can reach and all possible transitions it
can perform.

Figure 1: LTS Analyzer takes FSP as input

FSP is a process algebra notation having finite state
processes used for the concise description of component
behaviour particularly for concurrent systems. It is an
implementation of formal methods that provides construct to
formalize specifications of software components and
architecture. Each component consists of processes; each
process has a finite number of states and is composed of one
or more actions. There exists concurrency between
elementary calculator activities for which there is a need to
manage the interactions, communication and synchronization
between processes. Magee and Kramer [21] have proposed
an analysis tool LTS Analyzer for FSP notation.
.

Sci.Int.(Lahore),28(1),221-226,2016 ISSN 1013-5316; CODEN: SINTE 8 223

Jan.-Feb

Figure 2: High-Level Architecture Specifications of Smart Flood Monitoring SoS

4. PROPOSED SYSTEM - SMART FLOOD
MONITORING SOS

4.1 High-level System Architecture
High-level system architecture presents the system
elements at a higher level of abstraction. It gives a well-
defined picture of the SoS parts and how they fit together.
The high-level architecture of the Smart Flood Monitoring
SoS is shown in Figure 2
Data Sources collect the elements that are vital for flood
monitoring. These measures include rainfall, precipitation,
water level, water flow and structure report. On getting a
request from Communication Controller 1, these measures
are then sent to Data Storage through a communication
medium. This weather and flood related data can be in
various forms. It may include maps, pictures, models and
tables. Here the stored data is further analyzed to produce
results and forecasts. If the forecast is found to be for a
flood warning, alerts are generated and distributed to the
remote location through communication medium. These
remote locations include Emergency Responders,
Community and Independent Observers. Data collection,
storage, analysis and distribution centres also receive and
store data from remote locations in the form of queries help
measures, damage reports and verification results. This data
is used for evaluating the performance of the constituent
components and finally the overall performance of system.
Communication Controller 2 helps to maintain the
communication with the Remote Locations.
4.2 Structural Architecture
This phase takes a transition from high-level architecture to
a detailed structural architecture (i.e. components and
interfaces) of the SoS.
The interactions and dependencies of components and
interactions through interfaces with one another are also
presented. Component diagram represents the structural
architecture of the SoS. All components are put together
and the UML component diagram is shown in Figure 3.
External interfaces to interact with the autonomous
components are highlighted in red for clarity.

Figure 3: UML Component Diagram for Smart Flood

Monitoring SoS

4.3 Formal Behaviour Modelling of Smart Flood
Monitoring SoS
Behavioural model of Smart Flood Monitoring SoS
highlights the system functionality and actions. It is critical
in situations when a system is to be observed for its
response to user requests, its interaction with other systems
etc. Further, behavioural modelling helps to assess, verify
SoS correctness properties and validate the system. It also
serves to bridge the gap and makes a smooth transition
from analysis to implementation.
The proposed Smart Flood Monitoring SoS is a distributed
system. The objective is to design and develop a formal
correct system. Formal modelling aids to check the system
behaviour and ensure the correctness of the system.
Smart Flood Monitoring SoS is divided into four
components: Data Collection, Flood Analysis, Alert
Community, Alert Emergency Responders. CPN models are
constructed for each component. The behavioural
modelling and analysis is done by adopting the following

224 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),221-226,2016

Jan.-Feb

steps: constructing CPN models, running and simulating
the models in CPN tool, entering the state space tool to
analyze the SoS correctness properties (i.e. safety property,
liveness property), and if some error is found, analyzing to
correct it.
State space tool is applied to analyze the models for
bounded-ness, home, liveness properties. These properties
answer a number of the most important inquiries made as a
result of the state space analysis.
Bounded-ness Property: How many and which tokens a
place may hold?
Home Property: Does there exist a single home marking?
i.e. the marking that can be reached from any reachable
marking.
Liveness Property: Are all transitions live and can be
enabled again?
The following section presents and discussed the CPN
model for one of the module of Smart Flood Monitoring
SoS.

The CPN model for Flood Monitoring Analysis is
constructed as shown in figure-4. To perform analysis, the
flood data is requested from database using RQ variable of
the color set STRING. After retrieving the required data
represented here by the variable FD of the color set FData,
analysis is performed. Analysis results are represented by
flood statistics FS from the color set FStats. FS contains
the analysis results that may be one of these three: All
Clear, Flood Potential, Flood Warning. If the analysis result
into All Clear results, then the system is in Normal
Operation state; in case of Flood Potential, Flood
Prevention state is reached; and if the analysis indicates a
Flood Warning, then system further generates a Forecast
about the flood. Any action that is taken in Normal
Operation, Flood Prevention or Flood Warning is also
recorded in the Database.

Figure 4: CPN model for Flood Monitoring Analysis at start with tokens

To make a choice for possible analysis results, transition is bound manually as shown in Figure 5. Binding is chosen before
firing the transition.

Figure 5: CPN model for Flood Monitoring Analysis during Simulation (Binding the Transitions Manually)

Sci.Int.(Lahore),28(1),221-226,2016 ISSN 1013-5316; CODEN: SINTE 8 225

Jan.-Feb

Figure 6: CPN model for Flood Monitoring Analysis after Simulation Completion

Figure 6 shows the final simulation results. It shows the
color sets and variables used in the CPN model for Flood
Monitoring Analysis. Color set STRING is used to model
the request for flood related data. Color set FData and
FStats represent the flood data before and after the analysis
respectively. FD and FS are the variables of the color sets
FData and FStats. While RQ is a variable from color set
STRING. The state space analysis of the CPN for Flood
Monitoring Analysis is done by using CPN Tools and
generating state space report.
4.4 Safety property verification of Smart Flood
Monitoring SoS
The CPN model presented above verify some behavioural
properties of the system. These properties are boundedness,

home, liveness and fairness. It is important to verify the
correctness property of safety. Liveness properties are
checked and presented in state space analysis report of the
CPN. The safety properties of the SoS are checked by LTS
based model checking. Model checking verifies the
proposed system behaviour for safety property. Properties
are specified in FSP syntax consisting of sequence of states,
set of action labels and transition relations, FSP in turn
generates a Labelled Transition System (LTS). LTSA [21]
analyzes and verifies these properties. Table-1 shows the
safety property Flood Monitoring Analysis of Smart Flood
Monitoring SoS.

Table 1: Safety Property

Safety Property Flood warning state is a mutually exclusive state and system cannot be in Normal Operation or Flood Potential with Flood

Warning at the same time.

FSP property NORMAL_OPERATION = (processData -> ANALYSIS_RESULT),

// If analysis result does not indicate any flood situation, then normal

// operation continues. And in the case of a flood situation, system is

// in alert state.

ANALYSIS_RESULT = (flood_warning -> FLOOD_ALERT

 | no_flood_warning -> NORMAL_OPERATION),

FLOOD_ALERT = (alertGeneration -> NORMAL_OPERATION).

// After analysis result system performs corresponding activities, system

// repeats the Normal Operation to track the updates

Figure 7: LTS for Flood monitoring analysis

226 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),221-226,2016

Jan.-Feb

5. CONCLUSION AND FUTURE WORK

A smart flood monitoring SoS has its importance in not
only to evacuate the victims but also to reduce the damages
by providing rescue and help services. Our proposed
system will save the human lives, infrastructure and
economy.
The Smart Flood Monitoring SoS is a system that has been
designed and modelled using formal methods to ensure
correctness properties in each step. The emphasis is on
keeping the communication up which ensures that rescue
services remain available during the disaster. Our proposed
model addresses the SoS challenges involved in system
development, system working, and system evolution.
Architecture as well as design has been proposed covering
both static as well as dynamic aspects of the system
architecture. Formal verification and model checking is
adopted to verify the correctness properties of the specified
system. The elicited requirements are evolved towards the
high-level design in the form of workflow diagrams. This
design is further refined to develop architecture of the
Smart Flood Monitoring SoS.
Formal verification of the SoS ensures correctness
properties. CPN models with the timing constraints are
constructed, and model checking is done by specifying the
safety properties as FSP and generating LTS (Labelled
Transition System). The long term objective, after the
system gets implemented, is achieving the operational
excellence in community services. Thus, reducing damages
caused by floods.

REFERENCES

[1] M. MacDonald, “Guidelines for Climate Compatible
Construction & Disaster Risk Reduction in Rural
Punjab”, 2013. [Online]. Available:
http://cdkn.org/wp-content/uploads/2012/09/Climate-
Compatible-Construction-Guidelines_Final.pdf,
[Accessed: Aug. 05, 2014].

[2] B. Blanchard and W. Fabrycky, “Systems Engineering
and Analysis”, 3

rd
 Edition. Prentice Hall, (1998).

[3] B. Berthomieu and M. Diaz, “Modeling and
Verification of Time Dependent Systems Using Time
Petri nets”, IEEE Trans. Software Engineering, 17(3):
259-273(1991).

[4] P. M. Merlin and D. J. Farber, “Recoverability of
Communication Protocols”, IEEE Trans.
Communications, 24(4): 1036-1043(1976).

[5] G. Denaro and M. Pezze, “Petri nets and Software
Engineering”, Lecture Notes in Computer Science
(LNCS), 3098: 439-466(2004).

[6] X. He and T. Murata, High-level Petri nets
Extensions, Analysis, and Applications, Electrical
Engineering Handbook, Ed. Wai-Kai Chen, Elsevier
Academic Press, pp. 459-476(2005).

[7] H. Xudong, “A Comprehensive Survey of Petri Net
Modeling In Software Engineering”, Int. Journal of

Software Engineering and Knowledge Engineering,
23(5): 589-625(2013).

[8] K. Jensen, “Colored Petri Nets Basic Concepts,
Analysis Methods and Practical Use”, vol. 1 (1992).

[9] CPN Tools website, 2012. [Online]. Available:
http://www.cpntools.org. [Accessed: June 27, 2015].

[10] K. Jensen, L. M. Kristensen, J. L. Wells, “Coloured
Petri Nets and CPN Tools for Modeling and
Validation of Concurrent Systems”, Int. Journal on
Software Tools for Technology Transfer (STTT), 9(3):
213-254(2007).

[11] L. Wells, Performance Analysis Using Coloured Petri
Nets, PhD [Dissertation]. Dept. of Comp. Sc.: Univ.
of Aarhus, 2002.

[12] J. P. Quielle, J. Sifakis, “Specification and verification
of concurrent systems in CESAR”. Proceedings of the
5th International Symposium on Programming, pp.
337-350 (1982).

[13] E. M. Clarke, O. Grumberg, D. Peled, “Model
Checking”. MIT press, (1999).

[14] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic
verification of finite state concurrent systems using
temporal logic specifications”. ACM transactions
Prog. Lang. Syst., 8(2): 244-263(1986).

[15] E. M. Clarke, O. Grumberg, D. E. Long, “Model
checking and abstraction”. ACM Transactions Prog.
Lang. Syst., 16(5):1512-1542(1994).

[16] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith,
“Counter example-guided abstraction refinement for
symbolic Model Checking”. Journal ACM, 50(5):
752-794(2003).

[17] N. Akhtar, “Requirements, Formal Verification and
Model transformations of an Agent-based System: A
Case Study”, Computer Engineering and Intelligent
Systems (IISTE), 5(3): 1-16 (March 2014).

[18] N. Akhtar and M. M. S. Missen, “Contribution to the
Formal Specification and Verification of a Multi-
Agent Robotic System”, European Journal of
Scientific Research (EJSR), 117(1):35-55(January
2014).

[19] N. Akhtar and M. M. S. Missen, “Practical
Application of a Light-weight Formal Implementation
for Specifying a Multi-Agent Robotic System”, Int.
Journal of Computer Science Issues (IJCSI), 11(1):
247-255(January 2014).

[20] N. Akhtar, Yann Le Guyadec, and Flavio Oquendo,
“Formal Specification and Verification of Multi-
Agent Robotics Software Systems: A Case Study”, In
Proc. of Int. Conf. on Agents and Artificial
Intelligence (ICAART’09), pp. 475-482 (January
2009).

[21] J. Magee and J. Kramer, “Concurrency - State Models
and Java Programs”, John Wiley and sons, 2

nd
 edition,

pp. 1-223 (2006).

http://cdkn.org/wp-content/uploads/2012/09/Climate-Compatible-Construction-Guidelines_Final.pdf
http://cdkn.org/wp-content/uploads/2012/09/Climate-Compatible-Construction-Guidelines_Final.pdf
http://www.cpntools.org/

